365bet开户 传奇人物 365bet开户中华夏儿女民共和国已建产生“月宫风华正茂号” 为移居月亮做准备

365bet开户中华夏儿女民共和国已建产生“月宫风华正茂号” 为移居月亮做准备



365bet开户 1

365bet开户 2

2014年5月20日,在北京航空航天大学校园内,三位乘员谢倍珍、董琛、王敏娟伴随着众人的掌声,微笑着从“月宫一号”密闭舱中走出来。至此,他们在“月宫一号”内进行的为期105天的科学试验获得圆满成功。“月宫一号”即“月球基地生命保障人工闭合生态系统地基实验装置”试验成功在我国属首次,世界上只有美国和俄罗斯掌握该技术。

资料图:受控生态生保系统集成实验平台内的植物

生物再生生命保障系统原理图。

齐奥尔科夫斯基曾说过,“地球是人类的摇篮,但是人类不能永远生活在摇篮里,开始他将小心翼翼地穿出大气层,然后便去征服太阳系。”现在,一个能与地球媲美的“微型生物圈”——“月宫一号”可以实现航天员在远离地球的太空长期生活的目标。

嫦娥三号探测器探访月球,“嫦娥”和“玉兔”在“月宫”中互拍,人类什么时候也可以在月球上长期生存?鲜为人知的是,我国地面隐藏着一个刚建成的“月宫一号”,正在为此做着超前准备。

上月球种菜?

“‘月宫一号’是基于生态系统原理将生物技术与工程控制技术有机结合,构建由植物、动物、微生物组成的人工闭合生态系统,人类生活所必需的物质,如氧气、水和食物,可以在系统内循环再生,为人类提供类似地球生态环境的生命保障。”

365bet开户中华夏儿女民共和国已建产生“月宫风华正茂号” 为移居月亮做准备。“因为月球高辐射和微重力的环境在地球上极难模拟,目前地面实验只是在做生命保障系统的封闭性物质循环实验上完善。”负责人刘红教授介绍,为满足实验人员生命需要,密闭的“月宫一号”中种植粮食、水果和蔬菜。

密闭循环基地月宫一号明年亮相,但月球真实环境仍难模拟

365bet开户中华夏儿女民共和国已建产生“月宫风华正茂号” 为移居月亮做准备。“月宫一号”总设计师、首席科学家、北航生物与医学工程学院刘红教授介绍说,“‘月宫一号’将开展系列试验研究,为日后我国空间站作业和探索月球提供技术基础,同时还将用于研究地球生态系统物质循环机制,为地球生物圈的可持续发展作贡献。”

美国宇航局近日传出2015年“带植物去月球”的计划,而我国在近20年的研究中,已经完成了人和植物封闭共存的部分自给自足小型实验,小麦、水稻、大豆、花生、甜椒、胡萝卜、西红柿、芫荽等十余种蔬菜粮食也已经通过了模拟环境的考验,等待着到月球生长的那天。

嫦娥三号探测器探访月球,嫦娥和玉兔在月宫中互拍,人类什么时候也可以在月球上长期生存?鲜为人知的是,我国地面隐藏着一个刚建成的月宫一号,正在为此做着超前准备。

出舱仪式上,校长怀进鹏院士为三位乘员颁发了“冯如杯科学探索特别奉献奖”,北京市海淀区政协主席彭兴业,我校江雷院士、赵沁平院士,科学研究院院长唐文忠、生物与医学工程学院党委书记韩慧瑜和刘红教授一起共同为“环境生物学与生命保障技术研究所”揭牌。

365bet开户中华夏儿女民共和国已建产生“月宫风华正茂号” 为移居月亮做准备。负责人刘红透露,在宽阔的“月宫一号”,不仅种有蔬菜,还将有粮食和水果,满足实验人员的全部气体、水和食物的需要。

因为月球高辐射和微重力的环境在地球上极难模拟,目前地面实验只是在做生命保障系统的封闭性物质循环实验上完善。负责人刘红教授介绍,为满足实验人员生命需要,密闭的月宫一号中种植粮食、水果和蔬菜。

怀进鹏校长在致辞中对“月宫一号”密闭实验的成功,以及研究团队长期不懈的努力表达了感谢与感动。他说,“月宫一号”实验系统包含了我们未来对航天梦、载人梦的期待,正是这样一种科学精神,为我们提供了科学发展的机会。北航建校60多年来,正是因为有一批像刘红教授及其团队一样杰出的科研团队通过不懈的追求,创造出知识,赢得了荣誉,为北航树立了丰碑,也为中国树立了前行的灯塔,希望北航的师生遵循这种探索精神,永无止境地向前发展。

“我们小时候,觉得人登上月球是不可想象的梦,可现在我国也能轻松实现,很难说有一天,人类不会把植物种上月球。”刘红是北京航空航天大学生物与医学工程学院空间生命科学与生命保障技术中心主任,她对自己的研究很乐观。她多次实验的空间生物再生生命保障系统,就是要解决土生土长的地球人,登上太空后吃什么,呼吸什么,能生存多久的难题。

美国宇航局近日传出2015年带植物去月球的计划,而我国在近20年的研究中,已经完成了人和植物封闭共存的部分自给自足小型实验,小麦、水稻、大豆、花生、甜椒、胡萝卜、西红柿、芫荽等十余种蔬菜粮食也已经通过了模拟环境的考验,等待着到月球生长的那天。

中国科学院空间科学中长期规划生命科学领域责任专家、中国科学院微生物所刘志恒研究员,科技部基础司彭以祺副司长,中国载人航天工程办公室质量与运营管理办公室冯中堂主任,国家国防科工局系统一司李国平副司长分别表达了对“月宫一号”密闭实验成功的祝贺,希望北航继续充分发挥综合学科优势和人才优势,为中国的载人航天和人类的深空探索做出更大的贡献。

如何支持人类在太空长期健康生活,长达数月甚至数年?科学家的共识是必须依靠一套空间生物再生生命保障系统,国内也称之为受控生态生命保障系统。

负责人刘红透露,在宽阔的月宫一号,不仅种有蔬菜,还将有粮食和水果,满足实验人员的全部气体、水和食物的需要。

“月宫一号”的核心即为生物再生生命保障系统,这是目前世界上最先进的闭环回路生命保障技术,也是人类实现在外太空长期生存的核心技术。其特点是载人飞行器进入外太空后可以不再需要或很少需要地面物质支持,氧气、水和食物在系统内通过生物技术实现再生,航天员可长期在站内工作和生活,使得长期载人航天和行星探测成为可能。因此,俄罗斯、美国、日本和欧洲等航天大国都在该项技术研究上投入大量人力、物力,先后建立了不同类型的生物再生生命保障地面综合实验研究装置。

这套目前世界上最先进的闭环回路生命保障技术可以被通俗地解释为,在月球或火星等太空环境中,将有限资源进行反复处理与再生,从而源源不断地生产食物、氧气和水,确保为航天员提供最基本的生存必需品。因为航天时从地面向空间补给物资十分昂贵,在美国每千克花费1万-10万美元,而到月球和火星的长期空间飞行,几乎不可能再补给。

生保系统核心:植物

近年来,随着载人航天技术的飞速发展,“建成具有自主知识产权的生物再生式生命保障系统,解决建立月球基地生态环境中的关键性理论与技术问题,为建立火星长期居住基地解决生态生命保障问题”被列为我国空间科技发展的战略目标之一。尽管我国的BLSS研究取得了一定的成果,但与其他航天大国相比,在相关领域的研究仍处于比较滞后的阶段。直至2013年,我国所进行的BLSS集成试验,基本上利用植物解决了人在封闭环境下的呼吸问题,但是真正意义上的可实现满足人的主要营养需求、高闭合度的生物再生系统密闭实验还尚未开展。

在科学家基于空间环境特点,人工设计建造的密闭微生态循环系统中,绿色植物,尤其是蔬菜,承担了主要节点的重任。

我们小时候,觉得人登上月球是不可想象的梦,可现在我国也能轻松实现,很难说有一天,人类不会把植物种上月球。刘红是北京航空航天大学生物与医学工程学院空间生命科学与生命保障技术中心主任,她对自己的研究很乐观。她多次实验的空间生物再生生命保障系统,就是要解决土生土长的地球人,登上太空后吃什么,呼吸什么,能生存多久的难题。

365bet开户中华夏儿女民共和国已建产生“月宫风华正茂号” 为移居月亮做准备。自2004年起,北航刘红教授团队瞄准国家载人深空探测重大需求,怀揣着月球梦,团结协作,坚韧拼搏,经过近10年的执着奋斗,系统开展了BLSS从单元关键技术到系统基础理论与系统基础调控方法的研究,建立了面向空间生命保障的BLSS基本理论和技术体系及研究方法,2013年10月集成所取得的理论和技术研制出地基综合试验系统——“月宫一号”,2014年1月—5月成功进行了我国首次长期高闭合度集成试验,密闭试验持续了105天。特别值得一提的是,从“月宫一号”的理论和技术研究、舱室系统的工程设计、施工组织和质量监督、系统内关键设备安装、系统联合调试到长期多人密闭科学技术实验均由刘红教授的26人团队完成。

365bet开户中华夏儿女民共和国已建产生“月宫风华正茂号” 为移居月亮做准备。光合作用下,绿色植物提供食物和氧气,又将二氧化碳和其他废物“变废为宝”,植物还是水净化的功臣,根系吸收和叶片蒸腾参与系统的水循环。微生物则担负着下游的收尾工作,降解植物不可食用部分、乘员排泄物和生活废水等,使他们再生为植物提供水分和养料,为动物提供部分食品,使食物再生循环。

如何支持人类在太空长期健康生活,长达数月甚至数年?科学家的共识是必须依靠一套空间生物再生生命保障系统(BLSS),国内也称之为受控生态生命保障系统(CELSS)。

项目负责人刘红教授介绍,“月宫一号”由1个综合舱和2个植物舱组成,总面积160平米,总体积500立方米。其中综合舱包括居住间、人员交流和工作间、洗漱间、废物处理和昆虫间。每个植物舱分隔为2个植物间,可以根据不同植物生长需要独立控制环境条件。据悉,“月宫一号”分两期建设,目前建成的是一期。一期包含了一个植物舱(60平米,三层立体栽培,种植面积69平米)和一个综合舱,总体积约300立方米,可以为3位志愿者提供生命保障;此后二期再升级并扩建1个植物舱,可满足4人更高闭合度的生命保障需求。

早在20世纪60年代,载人航天开启之前,俄、美等国就在考虑人类未来在外太空长期驻留的生命保障问题。建立由植物、动物、微生物、人以及其他构成的物质流不断循环更新的闭路生态系统,是科学家努力的方向。

这套目前世界上最先进的闭环回路生命保障技术可以被通俗地解释为,在月球或火星等太空环境中,将有限资源进行反复处理与再生,从而源源不断地生产食物、氧气和水,确保为航天员提供最基本的生存必需品。因为航天时从地面向空间补给物资十分昂贵,在美国每千克花费1万-10万美元,而到月球和火星的长期空间飞行,几乎不可能再补给。

在“月宫一号”首次长期高闭合度集成试验中,在植物舱中完全人工控制的环境下,栽培筛选出的5种粮食作物,15种蔬菜作物,1种水果。利用植物不可食生物量培养黄粉虫为人提供部分动物蛋白。在“月宫一号”中实验的志愿者,收获粮食、蔬菜、水果和黄粉虫在系统中自己进行加工并食用,而不可食用生物量与人的粪及食物残渣等废物一起采用所研发的生物技术处理制备类土壤基质循环用于植物栽培。综合舱中人、动物和废物处理产生的富二氧化碳空气经过净化后送达植物舱,供植物光合作用;植物舱产生的富氧空气经空气净化后送到综合舱供人和动物呼吸,并提供废物处理所需氧气。植物舱中植物蒸腾作用产生的冷凝水通过净化后,一部分由系统补充微量元素后送到综合舱满足人的生活用水,其余与净化后的生活废水和尿液一起用于植物栽培。由此,形成一个闭环回路生命保障系统。

但最初开展的封闭的BLSS设计和空间应用研究,无论是在俄罗斯还是美国的实验中,绿色植物都是缺席者。

在科学家基于空间环境特点,人工设计建造的密闭微生态循环系统中,绿色植物,尤其是蔬菜,承担了主要节点的重任。

在本次长期多人高闭合度集成试验中,实现了在系统内循环再生100%的氧气和水,55%食物,“月宫一号”实验系统的总闭合度达到了97%。通过本次试验,确立了BLSS设计构建方法,初步建立了系统中物质动态平衡调控技术、共生植物优化配置与动植物高效培养技术以及废物的高效循环利用技术。发现了新的气体平衡调控方法;发现了空气中CO2浓度变化对植物暗呼吸、光合以及人的呼吸的影响量化规律;明确了生物再生生命保障系统今后的研究发展方向。

担此重任的是单细胞藻类,但俄罗斯科学家后来发现,尽管藻类放氧和吸收二氧化碳的能力较强,但吃起来却口感差,营养单一。如何建立包含粮食蔬菜等高等植物的“太空农场”成了俄美科学家的研究重点。

光合作用下,绿色植物提供食物和氧气,又将二氧化碳和其他废物变废为宝,植物还是水净化的功臣,根系吸收和叶片蒸腾参与系统的水循环。微生物则担负着下游的收尾工作,降解植物不可食用部分、乘员排泄物和生活废水等,使他们再生为植物提供水分和养料,为动物提供部分食品,使食物再生循环。

“月宫一号”是我国建立的第一个、世界上第三个生物再生生命保障地基有人综合密闭实验系统。正如国际同行专家评价,“月宫一号是目前世界上最先进的地基试验系统之一“,“月宫一号”的建立使我国在生物再生生命保障领域的研究水平进入到国际最先进行列,对保障我国载人登月、月球基地及火星探测等航天计划的顺利进行、保障航天员生命安全和生活质量具有重大意义。

高辐射和微重力极难模拟

早在20世纪60年代,载人航天开启之前,俄、美等国就在考虑人类未来在外太空长期驻留的生命保障问题。建立由植物、动物、微生物、人以及其他构成的物质流不断循环更新的闭路生态系统,是科学家努力的方向。

但如何让绿色植物在残酷的月球环境里生长,忍受从零下175摄氏度到零上120摄氏度巨大温差,忍受长达十几天的漫漫黑夜,以及微重力等环境?

但最初开展的封闭的BLSS设计和空间应用研究,无论是在俄罗斯还是美国的实验中,绿色植物都是缺席者。

这些即将承担大任的植物,需要满足一系列在狭小、密闭、微重力、超真空、强辐射的空间环境生存特点,还要能发挥食物生产、大气再生与净化、水分再生与净化和废物处理与再生等一种或几种作用。

担此重任的是单细胞藻类,但俄罗斯科学家后来发现,尽管藻类放氧和吸收二氧化碳的能力较强,但吃起来却口感差,营养单一。如何建立包含粮食蔬菜等高等植物的太空农场成了俄美科学家的研究重点。

植物是整个生保系统的核心部分,筛选的植物合适与否在很大程度上决定着试验的成败。

高辐射和微重力极难模拟

那些体积小、培养技术简单、易于繁殖和移植,遗传性状稳定、生长快、周期短、产量高、可食部分比值高,抗病和抗逆性强的植物优先被挑选,科学家还注意到,主要作为食物的它们,要符合人们的饮食文化习惯,并能满足食谱的多样化,还要具备一些本国特点。

但如何让绿色植物在残酷的月球环境里生长,忍受从零下175摄氏度到零上120摄氏度巨大温差,忍受长达十几天的漫漫黑夜,以及微重力等环境?

微生物领域的金针菇、平菇、酵母菌,藻类中的螺旋藻、小球藻等,还有研究中我国首次引入的水生蕨类植物红萍成为科学家选中的第一批实验者。

这些即将承担大任的植物,需要满足一系列在狭小、密闭、微重力、超真空、强辐射的空间环境生存特点,还要能发挥食物生产、大气再生与净化、水分再生与净化和废物处理与再生等一种或几种作用。

研究初期,欧美各国均把目标集中在叶菜类上,希望为宇航员提供新鲜蔬菜,实验中生菜成为外国科学家的最爱。

植物是整个生保系统的核心部分,筛选的植物合适与否在很大程度上决定着试验的成败。

我国也把目标集中在叶菜类上。1997年,我国航天医学工程研究院联合中科院的多家研究所进行了植物选育,从十几种叶菜类蔬菜中选出生菜、油菜、白菜和豌豆苗,实验证实,其中更符合我国人口味的油菜和白菜被认为是非常理想的“太空食品”。而豌豆幼苗则勉强通过了密闭环境的考验。

那些体积小、培养技术简单、易于繁殖和移植,遗传性状稳定、生长快、周期短、产量高、可食部分比值高,抗病和抗逆性强的植物优先被挑选,科学家还注意到,主要作为食物的它们,要符合人们的饮食文化习惯,并能满足食谱的多样化,还要具备一些本国特点。

联合研究团队在试验结论中不无担忧:“这些通过地面实验或短期空间搭载实验筛选出的物种,是否确实可行,还必须进一步通过大量地面模拟和空间飞行试验进行验证”。

微生物领域的金针菇、平菇、酵母菌,藻类中的螺旋藻、小球藻等,还有研究中我国首次引入的水生蕨类植物红萍成为科学家选中的第一批实验者。

上月底,英国《新科学家》周刊网站报道称,美国航天局正在开发一个含有5天空气用量的密封种植罐,罐内的植物种子可以在浸泡过营养液的过滤纸上发芽。这个重1公斤的小“温室”将成为某次不载人的登月行动中的一个付费搭载项目,行动很可能计划于2015年底由月球捷运公司完成。

研究初期,欧美各国均把目标集中在叶菜类上,希望为宇航员提供新鲜蔬菜,实验中生菜成为外国科学家的最爱。

这次行动成为人们对真正的植物在月球上生长最切近的期盼,受限于航空器的空间和重量限制,我国实验室里的植物还没有登上月球的福利。

我国也把目标集中在叶菜类上。1997年,我国航天医学工程研究院联合中科院的多家研究所进行了植物选育,从十几种叶菜类蔬菜中选出生菜、油菜、白菜和豌豆苗,实验证实,其中更符合我国人口味的油菜和白菜被认为是非常理想的太空食品。而豌豆幼苗则勉强通过了密闭环境的考验。

“因为月球高辐射和微重力的环境在地球上极难模拟,目前地面实验只是在做生命保障系统的封闭性物质循环实验上完善。”刘红介绍说,但十年前,俄罗斯就在国际空间站建成了“空间温室菜园”,20余次植物培养试验培养了甜豆、番茄、小麦和生菜等多种植物。

联合研究团队在试验结论中不无担忧:这些通过地面实验或短期空间搭载实验筛选出的物种,是否确实可行,还必须进一步通过大量地面模拟和空间飞行试验进行验证。

“月宫一号”种蔬菜、粮食、水果

上月底,英国《新科学家》周刊网站报道称,美国航天局正在开发一个含有5天空气用量的密封种植罐,罐内的植物种子可以在浸泡过营养液的过滤纸上发芽。这个重1公斤的小温室将成为某次不载人的登月行动中的一个付费搭载项目,行动很可能计划于2015年底由月球捷运公司完成。

36平米的植物舱内,高亮度的红光照射在在翠绿的生菜、油麦菜、紫背天葵、苦菊4种可食用蔬菜上,30多岁的试乘员唐永康、米涛呼吸着蔬菜提供的氧气,每餐还亲手采摘30-50克新鲜蔬菜充饥,“这些蔬菜在进舱前已培养好,新鲜采摘后涂抹甜辣酱后美美地生吃,但两人根本吃不完36平米的蔬菜。”他们出仓后总结。

这次行动成为人们对真正的植物在月球上生长最切近的期盼,受限于航空器的空间和重量限制,我国实验室里的植物还没有登上月球的福利。

这一幕出现在去年中国航天员科研训练中心主持开展的2人30天B
LSS集成技术试验成功后。经过近20年单项关键技术攻关,我国逐步拉近与国外的研究差距,建成了BLSS集成实验平台。

因为月球高辐射和微重力的环境在地球上极难模拟,目前地面实验只是在做生命保障系统的封闭性物质循环实验上完善。刘红介绍说,但十年前,俄罗斯就在国际空间站建成了空间温室菜园,20余次植物培养试验培养了甜豆、番茄、小麦和生菜等多种植物。

“试验突破了‘人-植物’氧气和二氧化碳交换动态平衡调控技术和微生物废水综合处理与循环利用等多项关键技术,大气、水和食物的闭合度分别达到100%,901%和10
.4%,并证明种植面积为13.5平方米的共生蔬菜能够提供1人的呼吸用氧,并能清除其呼出的二氧化碳,试验期间保持了良好的空气质量。”参与实验的中国航天员中心载人航天环控生保室主任郭双生撰文总结道。

月宫一号种蔬菜、粮食、水果

郭双生在今年6月的《航天医学与医学工程》中介绍,中国航天员中心先后研制成三代空间站植物装置地面样机,并进行了充分的地面验证考核,正等待时机进行空间在轨验证。

资料图:月宫一号内的植物等生命保障系统。

各国科学家研究月球种植物的初始,都是在地面营建模拟月球环境的实验装置。俄罗斯建成了世界上第一座用于研究BLSS的大型地基综合实验装置———B
IO
S系统,系统从藻类培养到增加植物生长舱,四年实验证明,氧气完全能自给自足。

36平米的植物舱内,高亮度的红光照射在在翠绿的生菜、油麦菜、紫背天葵、苦菊4种可食用蔬菜上,30多岁的试乘员唐永康、米涛呼吸着蔬菜提供的氧气,每餐还亲手采摘30-50克新鲜蔬菜充饥,这些蔬菜在进舱前已培养好,新鲜采摘后涂抹甜辣酱后美美地生吃,但两人根本吃不完36平米的蔬菜。他们出仓后总结。

其后连续十年的升级实验表明,63平方米的植物种植面积使系统在气体、水循环方面完全自给自足,并满足3名实验人员约70%的食物需求。

这一幕出现在去年中国航天员科研训练中心主持开展的2人30天BLSS集成技术试验成功后。经过近20年单项关键技术攻关,我国逐步拉近与国外的研究差距,建成了BLSS集成实验平台。

“BIO
S-3是迄今为止最成功的BLSS实验系统,它为后来其他国家开展相关研究奠定了基础。”刘红教授撰文评价说,她曾带领团队进行了近10年的B
LSS研究,上世纪90年代就在国内首次完成了“人-莴苣———
藻-蚕”地面小型实验系统。

试验突破了人-植物氧气和二氧化碳交换动态平衡调控技术和微生物废水综合处理与循环利用等多项关键技术,大气、水和食物的闭合度分别达到100%,901%和10.4%,并证明种植面积为13.5平方米的共生蔬菜能够提供1人的呼吸用氧,并能清除其呼出的二氧化碳,试验期间保持了良好的空气质量。参与实验的中国航天员中心载人航天环控生保室主任郭双生撰文总结道。

11月初,刘红主持修建的“月宫一号”也得到了类似的评价,在多国专家参观了北京航空航天大学建立的空间生命保障人工闭合生态系统实验装置———“月宫一号”后,认为它“是目前世界上最先进的生物再生生命保障地基综合实验系统之一,将对生物再生生命保障系统的研究发展做出重大贡献。”

郭双生在今年6月的《航天医学与医学工程》中介绍,中国航天员中心先后研制成三代空间站植物装置地面样机,并进行了充分的地面验证考核,正等待时机进行空间在轨验证。

目前,“月宫一号”还披着神秘的面纱,“10月底刚刚全部安装完成,目前刚开始启动性实验,我们将利用‘月宫一号’开展有人密闭实验研究,建立具有自主知识产权的、中国特色的月球基地B
LSS技术。”刘红说,“月宫一号”将在2014年春节前后向公众公开。

各国科学家研究月球种植物的初始,都是在地面营建模拟月球环境的实验装置。俄罗斯建成了世界上第一座用于研究BLSS的大型地基综合实验装置BIOS系统,系统从藻类培养到增加植物生长舱,四年实验证明,氧气完全能自给自足。

刘红透露,在宽阔的“月宫一号”,不仅种有蔬菜,还将有粮食和水果,满足实验人员的全部气体、水和食物的需要。

其后连续十年的升级实验表明,63平方米的植物种植面积使系统在气体、水循环方面完全自给自足,并满足3名实验人员约70%的食物需求。

BLSS技术虽然经历了50余年的发展历程,但至今该技术仍停留在实验研究阶段,远未实现工程化应用。但美、德等国却进行了各种月球基地B
LSS的概念设计:它建在月球南极常年光照的阿特肯盆地的山峰上,藏于月壤覆盖的地下或半地下,全封闭的系统中,低压接近1/2的地球海平面大气压,人和植物共同克服高真空、高辐射和陨石撞击,植物的生长保障着航天员长期封闭生存和自给自足。

BIOS-3是迄今为止最成功的BLSS实验系统,它为后来其他国家开展相关研究奠定了基础。刘红教授撰文评价说,她曾带领团队进行了近10年的BLSS研究,上世纪90年代就在国内首次完成了人-莴苣藻-蚕地面小型实验系统。

11月初,刘红主持修建的月宫一号也得到了类似的评价,在多国专家参观了北京航空航天大学建立的空间生命保障人工闭合生态系统实验装置月宫一号后,认为它是目前世界上最先进的生物再生生命保障地基综合实验系统之一,将对生物再生生命保障系统的研究发展做出重大贡献。

目前,月宫一号还披着神秘的面纱,10月底刚刚全部安装完成,目前刚开始启动性实验,我们将利用月宫一号开展有人密闭实验研究,建立具有自主知识产权的、中国特色的月球基地BLSS技术。刘红说,月宫一号将在2014年春节前后向公众公开。

刘红透露,在宽阔的月宫一号,不仅种有蔬菜,还将有粮食和水果,满足实验人员的全部气体、水和食物的需要。

BLSS技术虽然经历了50余年的发展历程,但至今该技术仍停留在实验研究阶段,远未实现工程化应用。但美、德等国却进行了各种月球基地BLSS的概念设计:它建在月球南极常年光照的阿特肯盆地的山峰上,藏于月壤覆盖的地下或半地下,全封闭的系统中,低压接近1/2的地球海平面大气压,人和植物共同克服高真空、高辐射和陨石撞击,植物的生长保障着航天员长期封闭生存和自给自足。

标签:, , , ,

相关文章

发表评论

电子邮件地址不会被公开。 必填项已用*标注

网站地图xml地图